Generalized hypergeometric Bernoulli numbers

نویسندگان

چکیده

We introduce generalized hypergeometric Bernoulli numbers for Dirichlet characters. study their properties, including relations, expressions and determinants. At the end in Appendix we derive first few of these numbers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Bernoulli-Hurwitz Numbers and The Universal Bernoulli Numbers

The three fundamental properties of the Bernoulli numbers, namely, the theorem of von Staudt-Clausen, von Staudt’s second theorem, and Kummer’s original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients of power series expansion of a higher genus algebraic function with respect to suitable variable. Our generalization strongly ...

متن کامل

Bernoulli numbers and generalized factorial sums

We prove a pair of identities expressing Bernoulli numbers and Bernoulli numbers of the second kind as sums of generalized falling factorials. These are derived from an expression for the Mahler coefficients of degenerate Bernoulli numbers. As corollaries several unusual identities and congruences are derived.

متن کامل

Relationships between Generalized Bernoulli Numbers and Polynomials and Generalized Euler Numbers and Polynomials

In this paper, concepts of the generalized Bernoulli and Euler numbers and polynomials are introduced, and some relationships between them are established.

متن کامل

Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers

We investigate sums of products of Bernoulli numbers including poly-Bernoulli numbers. A relation among these sums and explicit expressions of sums of two and three products are given. As a corollary, we obtain fractional parts of sums of two and three products for negative indices.

متن کامل

Congruences concerning Bernoulli numbers and Bernoulli polynomials

Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas

سال: 2021

ISSN: ['1578-7303', '1579-1505']

DOI: https://doi.org/10.1007/s13398-021-01042-2